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bstract

Although a generally accepted procedure has now been established for the organizational handling of out-of-specification test results, the
ncertainty surrounding their statistical evaluation persists. Two statistical equations, the prediction and the confidence interval, are sufficient to
xamine whether data numbers indicate out-of-specification (OOS) results or not. This is demonstrated by means of 10 examples. These equations
re usually sufficient to specify limit values as well. A number of consequences have been derived from a discussion of borderline cases:

A) If only one measured value is OOS, the same is true for the whole result (there are three exceptions: high data numbers, outliers, or the
reportable result is not the single value but e.g. the mean).

B) The result is not automatically within specification, if this holds true for all measurements. If all measurements are close to the specification
limit and the measurement error is high, an OOS results is still possible.

C) If it is clear that the obtained data will be close to the limit, a precisely working method and a relatively high data number is required. In order
to obtain future measurements that remain within specification, the difference between the limit and the mean value must not become smaller
than 1.65 times the standard deviation, even if very high numbers of measurements are provided.

Procedures to deal with extreme values, so-called outliers, are not straightforward. The statistical evaluation is troublesome, because the

robability distribution cannot be determined. This problem is discussed by another four examples. In several cases the outlier can be detected
ithout doubt, for example, using Dixon’s test or the box plot. However, there are a number of borderline cases, when a value is suspected to be

n outlier, but this cannot be proven by statistics [7,9].
2007 Elsevier B.V. All rights reserved.
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. Preamble

.1. Importance and definitions

The handling of out-of-specification test results (OOS results)
as been a hot topic since the rendering of the Barr Decision in

993. On the one hand, the intended or unintended manipulation
f data can feign within-specification test results (WS results)
ven if quality limits are violated. On the other hand, there is the
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anger of further complicating control mechanisms. The latter
ould result in a disproportionate increase of the work scope

nd thus to higher production costs and ultimately be reflected
n unnecessarily high drug prices [11].

First, the definition given by the FDA for purposes of the
ocument “Guidance for Industry” [1]: “The term OOS results
ncludes all test results that fall outside the specifications or
cceptance criteria established in drug applications, drug master
les (DMFs), official compendia, or by the manufacturer. The

erm also applies to all in-process laboratory tests that are outside
f established specifications.”
This definition should be amended as it concerns only “OOS
esults” for single measurements. The reportable result however
an also be calculated from several single values. For example,
ometimes the mean of a measurement series is the reportable

mailto:h.waetzig@tu-bs.de
dx.doi.org/10.1016/j.jpba.2007.02.035
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esult. In principle the considerations below remain valid if one
reats the reportable results as single values. The reportable
esults however may provide some additional information, as
nformation about the data distribution may be available.

Whether single measurements are OOS or WS can be easily
etermined by comparison of the results with the specifications
nd requires no statistical methods. Of crucial importance is
he question whether entire production units, for example, pro-
uction batches, must be considered WS or OOS. Generally,
roduction units cannot be tested as a whole. Samples are taken
rom the unit whose pertinent parameters are then measured.
he measurements obtained in this fashion will generally show

andom variation. A part of the single results can be WS, another
OS. The question here is: When should an entire production
nit be declared OOS, when WS?

In order to formulate this question precisely and understand
he solutions, one has to draw upon some of the basic terms of
he theory of probability and statistics. Imagine that instead of
aking only a few samples from the production unit, sampling is
onstantly repeated and measurements are taken each time. The
amples are taken at random and independent of each other. The
esult is a series of measurements whose variation is random.
his series is referred to as the total population (R. v. Mises has
lso introduced the term “collective”). The relative frequency at
hich measurements within a certain interval (from x to x + dx)
ccur in this total population is the probability of finding a mea-
urement within this interval in a sample randomly selected from
he production unit. The distribution of the probabilities across
he possible value range of the measurements is characterized
y the distribution function F(x). It is the probability of obtain-
ng a measurement value from a randomly selected sample that
s smaller than or equal to x, where x covers the entire value
ange. This distribution function characterizes in completely this
otal population of measurements. It therefore makes sense to
efine the specification conformity of a production unit (batch)
y means of this distribution function. For example, if xlsl repre-
ents the lower specification limit (i.e. the measurements x ≥ xlsl
re WS and the measurements x < xlsl are OOS), the production
nit will be considered WS if the probability γ for WS results
s greater than a prescribed threshold γ0 (i.e. 1 − F(xlsl) ≥ γ0),
here γ0 is to be set at a minimum of 50%. With two-sided

pecification limits xlsl and xusl (i.e. measurements in the range
f xlsl < x ≤ xusl are WS and values outside this range are OOS)
he production unit is considered WS if the probability γ for WS
esults is greater than the thresholdγ0 (i.e. F(xusl) − F(xlsl) > γ0),
therwise it is considered OOS.

Thus, in order to decide whether a production unit is to be
eclared OOS or WS, it is necessary to specify a threshold value
0 for the probability of WS results in the total population. By
eans of the measurements obtained from a finite number of

amples taken from the production unit it can then be determined
hether the percentage of WS results in the total population is

maller than or equal to γ0 (the production unit is then classified

s OOS), or greater than γ0 (the production unit is to be classified
s WS). The number of samples taken is usually expressed as n
nd the n obtained measurements x1, x2, . . ., xn are called a ran-
om sample. It is assumed that n measurements were taken from
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he total population at random and independently of each other.
s the random sample usually constitutes only a very small part
f the total population, it follows that it does not fully suffice to
epresent the total population. The determinations made based
n the random-sample values and thus even the decision whether
production unit is WS or OOS, can therefore be incorrect. To

ormulate the method accurately it is necessary to also specify
he permissible probability of incorrect decisions. The proba-
ility with which a sufficiently good production unit is falsely
ejected as OOS is generally referred to as α, the probability
ith which an OOS production unit is considered WS as β.
The error probabilities α and β depend on:

. The distribution F(x) of the total population.

. The employed method for the decision.

. The size n of the random sample on which the decision is
based.

They do not describe the total population but merely the
ethod upon which the decision is made. In order to define α and
more precisely, one has to imagine that the decision between
OS and WS is based on every possible random sample from

he total population. Again and again, n samples are taken from
he production unit and measured. Based on the results of these

easurements the same method is employed to decide whether
he production unit is WS or OOS, with the actual quality of the
roduction unit (i.e. either WS or OOS) being known.

The error probability α is the relative frequency with which an
OS decision is made using this method despite the production
nit being WS. Accordingly, β is the probability with which the
roduction unit is considered WS despite in reality being OOS.

The law of large numbers, established by and named after the
wiss mathematician Jakob Bernoulli (1654–1705), describes

he correlation between the size n of the random sample and the
rror probability in evaluating a production unit based on a ran-
om sample. The larger the random sample n, the more precise
statement can be made in regard to the total population on the
asis of this random sample. And therefore, the smaller the prob-
bility of rendering an incorrect decision based on the random
ample. The size n of the random sample also affects the accuracy
f the conclusions and decisions derived from the random sam-
le. The complementary value 1 − α accordingly expresses the
eliability with which the correct decision of “WS” is rendered
or a production unit, and the value 1 − β the reliability with
hich the correct decision of “OOS” is made for a production
nit.

In evaluating the specification conformity of production units
production batches), it therefore does not suffice to formulate
he specification limits or acceptance criteria for individual mea-
urement values. One also has to specify the WS percentage γ0
f the total population to be exceeded if the production unit
s to be declared WS, as well as the error probability α or the
eliability 1 − α with which the specification conformity of the

roduction unit is to be determined based on n random-sample
alues.

The handling of OOS results presents in large part also an
rganizational problem. In many cases the causes of errors can be
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ondary component in this example should not be smaller than
0.1. Cases A and B are not borderline cases: the mean values
of the random samples all lie above the specification limit, as
does a large part of the prediction range. What is the case in
20 H. Köppel et al. / Journal of Pharmaceutic

uickly contained, detected and prevented in the future. Impor-
ant for this are:

documentation,
error investigation,
statistical evaluation,
batch processing,
process adaptation/change,
standard operating procedures (SOPs) and their establish-
ment,
preparation of audits.

Specify an overview of procedures in the event of suspected
ut-of-specification quality [1–4].

This article discusses statistical methods to determine
hether a production unit is OOS or WS by means of exam-
les based on the proposed guidelines [1] and the above-cited
dditional observations. From the statistical point of view it also
rovides suggestions on devising tests aimed at yielding reliable
esults.

.2. Introductory examples

When does a random sample of (analytical) measurements
rom a production unit (batch) provide information on the vio-
ation of the specification in this production unit? Conversely,
n which cases can it be assumed based on the available analyt-
cal results that the specifications are met? Let us discuss a few
xamples (compare Fig. 1).

.2.1. Various options for the correlation between limit,
ean value and measurement range
The amount of a secondary component should not exceed a

pecified limit (e.g. 0.1%). Horizontal lines depict the highest
nd lowest measurement value, respectively, forming the mea-
urement range, and the mean value of the random sample. Cases

and B are clear: even the mean value lies above the limit; the
nvestigated samples are OOS (out-of-specification, i.e. they do

ot conform to the requirements). In case C the mean value
ies below the specified limit but single values lie above it. Can
he test result still be within specification (WS)? Even, if the
eportable result is not the mean?

ig. 1. Various options for the correlation between limit, mean value and mea-
urement range.
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In case D all values of the random sample lie above the speci-
ed limit. Does this offer a guaranty for meeting the specification
r can the test result be OOS nonetheless? If yes: with what
robability? Each of these questions correlates to the statistic
nference drawn from a random sample to the respective total
opulation.

.2.2. Are borderline cases still within specification?
Fig. 1 shows that in borderline cases it is not always pos-

ible to decide clearly between OOS and WS results. Fig. 2
epicts some of these discussed borderline cases in more detail.
epicted are five measurement values each from random sam-
les A, B, C1, . . ., D4. They represent hypothetical but realistic
ata sets based on normally distributed random numbers. The
ashed line marks the specification limit, the amount of a sec-
ig. 2. (a–c): Detailed discussion of scenarios A–D (compare Fig. 1). The limit
n all examples is 0.1. (a) Single values. (b) Mean value and range. (Circle)

ean; (diamond and triangle) highest and lowest single value. (c) Prediction
nterval. (Circle) Mean; (diamond and triangle) upper and lower limit of the
rediction interval.
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xamples C1–C3, however? Can a single value be OOS if an
nvestigation reveals the total result to be WS? Quite so! With
ery high data numbers it is even to be expected that single values
ill lie outside the specification range, as the normal distribu-

ion is generally unlimited. However, for the frequently used
ower data numbers (n < 10), even a single OOS value points
trongly to an overall OOS result, provided that the single val-
es and thus the prediction range are relevant for the evaluation
f the random sample (“individual OOS results indicate noncon-
ormance,” compare [1]). If only the mean value is required to
onform to specification for the batch to be WS, a single value
n smaller random samples may sometimes be OOS (e.g. Fig. 2,
3) without the total batch having to be judged OOS [8]. It is

mpossible, however, in cases of small data sets (cases C1–C3)
or the total data set to be WS if a single sample is OOS and
he prediction range is used for the evaluation (compare Sec-
ions 2.1.3 and 2.2.1). This interval must be relied upon for the
ssessment if it is crucial for the individual elements of a batch
o conform to a given specification.

This statement is generally valid if the t-distribution is used
or single values. Even if all other measurement values lie clearly
ithin the specification and only one value just outside, the stan-
ard deviation increases significantly. This, in turn, increases the
rediction interval, which then overlaps the specification limit.
ach single value of a random sample thus strongly influences
oth the position and the size of the prediction interval, espe-
ially for the customary small data sets. The rule therefore is:
f one value is OOS, the entire data set is OOS if the individual
alues are crucial and the number of data is small.

.2.3. Assessment of production units based on the results
btained from a random sample n

Fig. 3 depicts the measurement values from four random sam-
les of varying sizes, obtained by simulation from a normally
istributed total population having a mean value of 6.2 ppm and a
tandard deviation of 2.2. A one-sided, upper specification limit
f 10 ppm has been specified for this example. This means, val-
es greater than or equal to 10 are considered OOS, smaller
alues WS. 95% of the values of this total population conform
o specification, 5% are OOS. The dashed line marks the spec-

fication limit. Any values lying above this limit are OOS. The
pecification limit for this example is set to be 10 ppm and corre-
ponds to the maximum permitted concentration of an impurity
n a pharmaceutical. In case 1 the random sample consists of n = 5

ig. 3. Four random samples from the same total population (N = 100) with
= 95% WS results. Case 1: n = 5; case 2: n = 10; case 3: n = 30; case 4: n = 100.
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alues, all of which are smaller than 10 ppm, i.e. within specifica-
ion. One would therefore be inclined to consider the production
nit specification-conform. But what can indeed be said about
he percentage γ of specification-conform measurement values
n the total population based on these five values?

As we will show later, based on five random-sample values
hat are all WS one can state with a reliability (probability) 1 − α

f 80% that at least the percentage γ0 = 0.725 (72.5%) of the total
opulation is specification-conform (WS). At this reliability of
0%, the production unit can be considered WS if the specified
hreshold γ0 = 0.70.

If one wishes to make the statement with a reliability 1 − α

f 90%, then the lower limit for γ0 can be set at only 0.631. If
he reliability is to be 95%, the lower limit can only be 0.549.
he reliability 1 − α and the minimum percentage γ0 of WS

esults in the total population able to be assumed based on the
andom-sample result, move in opposite directions for a given
andom-sample size n. The greater the reliability the smaller the
ower limit that can be maintained for the percentage γ0.

In the second case the random sample consists of 10 values of
hich one is greater than 10 ppm and therefore OOS. In case 3

he random sample comprises 30 measurement values of which
are OOS. In case 4 the random sample comprises 100 values

f which 5 are greater than 10 ppm. All of these cases show the
ype of inference one can draw on the specification conformity
f production units based on the results obtained from random
amples: at a specified threshold γ0, it can be determined with the
rror probability α or the reliability 1 − α whether a production
nit is WS or OOS. Furthermore, limits for the percentage γ

f WS results in the total population can be maintained with a
eliability of 1 − α.

The calculations for these special cases can be viewed in
he additional online Section 2.4.1 which the interested reader
ill find at following web site: http://www.pharmchem.tu-
s.de/forschung/waetzig/support/.

. Statistical methods to determine the OOS status of
roduction units Statistical inferences from the random
ample to the total population

.1. Distribution-free calculations

.1.1. Test methods to determine whether the percentage of
S results in the total population is greater than a

hreshold γ0

As stated in the preamble, the aim is to state to a certain
eliability 1 − α, based on the results of random sampling, on
he probability γ with which in a production unit results con-
orming to specification can be expected. In particular, it is to
e determined based on this reliability whether γ is greater than
specified threshold γ0 or smaller than or equal to γ0. With

iven specification limits, the actual percentage γ depends on
he distribution function F(x). It is important to point out that

he real distribution function is normally not known. This func-
ion, however, is not required to determine the percentage γ . It
uffices to determine how many of n random-sample values x1,
. ., xn are WS and how many are OOS. In the first case of the

http://www.pharmchem.tu-bs.de/forschung/waetzig/support/
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ve random-sample values, for example, all five values were
S (Fig. 3). In case 2, 9 of 10 values were 9 WS (0.9), in case 3,

8 of 30 (0.933) were WS and in case 4, 95 of 100 values (0.95)
Fig. 3). By means of the number k of WS results among n
andom-sample values (or by means of the frequency h = k/n)
t is to be determined whether the percentage γ of WS results
n the total population is greater than γ0 or whether it does not
xceed this threshold. If γ > γ0 one can assume that the produc-
ion unit conforms to specification. In the statistical test theory
he assumption “the production unit meets the specifications” is
alled the null hypothesis and the assumption “the production
nit does not meet the specifications” as alternative hypothesis.
his assignment is arbitrary and may be reversed. The rejection
f the null hypothesis despite its being correct should occur with
he probability α at the highest. α is the error probability of the
st kind, also referred to as “producer’s risk.” The reverse case,
here one decides in favor of the null hypothesis although the

lternative hypothesis applies, is referred to as error of the 2nd
ind or as “consumer’s risk” and occurs with the probability β.

The test method implies that for the number k of WS results
n the random sample of the size n, a threshold k0 is specified.
f the number k of WS results in the random sample of the
ize n reaches or exceeds this threshold, the null hypothesis is
onfirmed and the production unit considered WS. If k does not
each the threshold k0 the null hypothesis is abandoned and the
roduction unit considered OOS.

If n is not too small, Eq. (1) should apply (for detailed infor-
ation see the online attachment to this publication)

· γ0 · (1 − γ0) > 1 (1)

he smallest natural number may be used as threshold k0 for
hich the following is true:

0 ≥ n · γ0 + z1−α

√
n · γ0 · (1 − γ0); k0 ∈ N (2)

0 is the threshold value required to be reached for the percentage
f WS values in the random sample in order for the produc-
ion unit to be considered; WSγ0 is minimum threshold value
equired to be reached for the percentage of WS values in the
roduction unit in order for the production unit to be considered
S. z1−α is the (1 − α) quantile of the standard normal distri-

ution (mean value 0, variance 1); n is the size of the random
ample.

Here, z1−α is the (1 − α)-quantile of the standard normal dis-
ribution (mean value 0, variance 1). It describes the value for
hich n·α observed values are smaller or equal and n·(1 − α)
alues greater. The values for z1−α can be found in the table
Quantiles of the Standard Normal Distribution N(0, 1),” cited
n every statistics text book or manual. For example, one finds
or:

α = 0.2 z1−α = 0.8416 α = 0.05 z1−α = 1.6449

α = 0.1 z1−a = 1.2816 α = 0.025 z1−α = 1.960
For example, for n = 5, γ0 = 0.5 and α = 0.1, the value on the
ight side of the formula is equal to 3.93. Rounded to the next
reater whole number, the value becomes 4. The null hypothesis
s also acceptable and the production unit considered WS if at

t
w
t
w
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east four of the five measurement results are WS. If one wishes
o make a decision using α = 0.05, then the figure on the right of
he formula is equal to 4.34. Rounded to the next greater whole
umber it becomes 5. The production unit can be considered WS
ith a reliability of 95% only if all five measurement results are
S. In case 1 all five measurement values are WS. Conversely,

t can be stated with a reliability of 95% that the percentage γ

f WS results in the total population is greater than or equal to
.5 (da γ0 = 0.5). If the percentage 0.7 is specified as threshold
0, then the value on the right side for α = 0.1 is 4.81, i.e. 5.
ccordingly, the production unit is considered WS with a relia-
ility of 90% (1 − α) if all five measurement values are WS. If
t γ0 = 0.7 one wishes to make a determination with a reliability
f 95% (α = 0.05), then the number on the right of the formula
s equal to 5.19, i.e. 6! This means that of five measurement
alues, 6 must be WS, which, of course, is impossible. With this
eliability it is therefore no longer possible to determine for five
andom samples whether γ0 is greater than 0.7. This shows that
n cases of small random-sample sizes, determinations with a
pecified reliability 1 − α can be made for limited values of γ0
nly. If all random-sample results are WS and one wishes to
etermine, based on a given α, whether the percentage of WS
esults in the total population is greater than or equal to γ0, the
ollowing applies to the size n of the random sample as a first
pproximation:

≥ log α

log γ0
; n ∈ N. (3)

or α = 0.05 and γ0 = 0.7, therefore, n should be greater than
.40, i.e. at least 9.

A useful result can still be obtained from Eq. (2) for a random-
ample size of n = 7. Here, all seven values of the random sample
ust be WS in order for the batch to be considered WS, i.e.
= k0 = 7. For smaller random-sample sizes, even Eq. (2) is
nsuitable for making a determination for the given parame-
ers. The deviation during the calculation of n originates from
he fact that Eq. (3) allows only a rough estimate of the mini-

um required random-sample size n. By inputting the values for
and γ0 one obtains the value 9. Eq. (2) allows for a more exact

alculation but is more cumbersome. By equating k0 and n and
nputting the values for α and γ0 one arrives relatively quickly
t the wanted number even here in solving the equation. If the
umber k of WS results in the random sample does not reach
he threshold k0 and the null hypothesis is therefore abandoned,
t does not follow that the WS percentage γ in the production
nit cannot be greater than γ0. For a given random-sample size n
he null hypothesis just cannot be maintained with the specified
eliability 1 − α.

The probability with which the null hypothesis is abandoned
or a WS percentage γ < γ0 (the total population thus is OOS),
.e. the production unit is subsequently rejected as OOS, is called
he “power” of the test method at the value γ . This power is
esignated as 1 − β. It is the complement to the β-error, i.e.

he error of the 2nd kind, which expresses the probability with
hich an OOS production unit is accepted as WS. The power of

he test characterizes the precision of the test, i.e. the reliability
ith which an OOS result is recognized as such. In addition to
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Table 1
Required random-sample sizes n and the thresholds k0 for different combinations
of γ0 and γ1 and different values of α and β to allow a test determination to be
made

α (%) β (%) n k0

�0 = 0.5,
γ1 = 0.9

20 20 3 3
10 20 5 4
10 10 7 6

5 20 8 7
5 10 10 8
5 5 11 9

�0 = 0.6,
γ1 = 0.9

20 20 5 4
10 20 9 8
10 10 12 10

5 20 13 11
5 10 16 13
5 5 19 15

�0 = 0.7,
γ1 = 0.9

20 20 11 9
10 20 18 16
10 10 24 20

5 20 26 23
5 10 33 28
5 5 39 33

�0 = 0.8,
γ1 = 0.9

20 20 35 30
10 20 59 52
10 10 81 70

5 20 83 73
5 10 109 95
5 5 133 114
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and the given α, it also depends on the random-sample size
, as β, in turn, depends on α and n. The question is, how large
ust the random-sample size n be at a minimum for the null

ypothesis, at a given reference value γ1 < γ0 to be abandoned
ith the power 1 − β and the production unit therefore to be

onsidered OOS.
As deduced in the online attachments, n must be at least as

reat as the smallest whole number for which the following
pplies:

≥
(
z1−α

√
γ0 · (1 − γ0) + z1−β

√
γ1 · (1 − γ1)

)2

(γ1 − γ0)2 (4)

Calculation example:

= 0.05; β = 0.05; γ0 = 0.7; γ1 = 0.8.

≥
(

1.645 · √
0.7 · 0.3 + 1.645 · √

0.8 · 0.2
)2

(0.8 − 0.7)2 ⇒ n ≥ 200

For the given parameters the size of the random sample there-
ore should comprise at least 200 values in order for the batch,
t γ1 = 0.8 and the threshold γ0 = 0.7, to be significantly rec-
gnized as WS. For γ1 = 0.96, for example, a random-sample
ize of n = 18 (17.2) suffices in order to consider the batch to
e WS with the required reliability and for γ1 = 0.99, n is only
1 (10.01). This means, the better the quality of the batch (the
reater the difference between the required minimum quality and
he verified quality), the smaller n becomes at the same reliabil-
ty! This is relevant in pharmaceutical production insofar as due
o the consistently high production quality of today’s production
ines, the required quality is usually far exceeded.

Table 1 (see Section 2.2.2) cites the required random-sample
izes n and the thresholds k0 for different combinations of γ0 and
1 and different values of α and β to allow a test determination to
e made. These data show that small random samples allow for
nly relatively inexact statements. It should also be pointed out
hat γ0 and γ1 are merely indicators for the actual percentage

of WS results in the total population. If the null hypothesis
s assumed, it can be stated with a reliability of 1 − α that γ is
reater than γ0. If the null hypothesis is abandoned, however,
t can be stated with a reliability of 1 − β that γ is smaller than
0. For five random-sample values of which at least four are
S, it can thus be stated with a reliability of 90% (α = 0.1) that
is greater than 0.5. If only three of the five values are WS, it

an stated with a reliability of 80% (1 − β = 0.8) that γ is smaller
han 0.9. More cannot be expressed by means of this test method
or a random-sample size of 5.

.1.2. Confidence intervals for the percentage γ of WS
esults in the total population

The test determination may be important, but it is not fully
atisfactory. In addition, one wants to make more-precise state-

ents with a given reliability on the actual percentage γ of WS

esults in the total population. This can be done by determin-
ng a confidence interval for the unknown value γ based on
he number k of WS results among n random-sample values

t

l
o

f the null hypothesis is assumed, it can be stated with a reliability of 1 − α that
is greater than γ0. If the null hypothesis is abandoned, it can be stated with a

eliability of 1 − β that γ is smaller than γ0.

t a given confidence probability 1 − α. A distinction is drawn
etween a one-sided upper, a one-sided lower and a two-sided
onfidence interval. The one-sided upper rank is specified by the
alue γmin, which is selected in a way to be able to state with the
eliability 1 − α that γ is greater than γmin. This reliability refers
o the hypothetical, indefinitely repeated random sampling and
etermination of γmin. In this indefinite series of γmin values
he percentage 1 − α is smaller than the actual percentage γ of

S results in the total population and only the percentage α

s greater than γ . Analogously, the one-sided lower confidence
nterval for the confidence 1 − α is specified as a value γmax,
hich is selected in a way to allow to state with the reliability
− α that the actual value γ is smaller than γmax. Both val-
es together define a two-sided confidence interval for γ . This
nterval overlaps with a given reliability the actual value γ . The
eliability of this statement is 1 − 2α, as the error probability for
he specification of γmin and γmax, respectively, is α.

Tables 6–16, which are cited very often in the following stan-
ae can be viewed as well as explaining formulas in respect to
etter understanding in the additional online attachment, see
herefore http://www.pharmchem.tu-bs.de/forschung/waetzig/
okumente/courtesy translation.pdf or http://www.pharmchem.

u-bs.de/forschung/waetzig/support/.

Tables 7–10 (see the online attachment, A–D) cite the lower
imits γmin of the upper confidence level for the different values
f α, n and k, and Tables 11–14 the upper limits γmax of the

http://www.pharmchem.tu-bs.de/forschung/waetzig/dokumente/courtesy_translation.pdf
http://www.pharmchem.tu-bs.de/forschung/waetzig/support/
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ower confidence interval. The formulas used to calculate these
alues are given in the online attachment, too. Tables 7–10 show
hat with small random-sample sizes, only relatively imprecise
tatements can be made on the percentage of WS results to be
xpected in the total population. For a random sample compris-
ng n = 3 values, of which all are WS (k = 3), for example, it
an be stated with a reliability of 80% that the percentage γ is
reater than 0.585, with a reliability of 90% that it is greater than
.464, and with a reliability of 95% that it is greater than 0.368.
or a random-sample size of n = 10 one can make more precise
tatements. If all random samples are WS, one can state with a
eliability of 80% that the percentage γ is greater than 0.851,
ith a reliability of 90% that it is greater than 0.794, and with a

eliability of 95% that it is greater than 0.741. This means that if
ne wishes to make relatively reliable statements (1 − α as high
s possible), one has to accept that the statement itself becomes
ess and less precise.

If none of the values in a random sample is WS, then the lower
imit γmin = 0, as it cannot be ruled out that all of the values in
he total population are OOS as well. Analogously, in a random
ample showing only WS results the upper limit γmax = 1, as all
f the results in the total population could be WS as well.

If the number k of WS results in a random sample of the size
is not 0 or n, then γmin and γmax form the lower and upper

imits of a two-sided confidence interval for γ for the confidence
robability 1 − 2α. Tables 8 and 12 show that an actual percent-
ge γ between 0.035 and 0.804 can be asserted with a reliability
f 90% if one of three random-sample values is WS and two are
OS; with a reliability of 97.5% an interval of 0.008–0.906 can
e asserted for γ (compare Tables 10 and 14). For 10 random-
ample values of which 9 are WS and 1 OOS, it can be asserted
ith a reliability of 97.5% that the percentage γ amounts to
etween 0.555 and 0.997 (compare Tables 10 and 14). With an
ncreasing random-sample size n the confidence interval for the
robability γ becomes narrower, making the statement about the
ctual value for γ more exact.

The lower limit γmin can serve to test the null hypothesis
≥ γ0 against the alternative γ < γ0. One determines (e.g. from
ables 7–10 or by means of the formulas given in the online
ttachment) the lower limit γmin for the number k of WS results
bserved the random sample of n values and for the specified α.
he null hypothesis is accepted if γmin is greater than γ0, or else

t is abandoned. It becomes clear that this test is equivalent to the
est discussed in Section 2.1.1, i.e. that it leads to the same result.
or example, for n = 3 and k = 3, with α = 20%, the lower limit
min = 0.585. The null hypothesis γ ≥ 0.5 is to be accepted. With
being 10%, WS can be asserted if all of four random-sample

alues are WS (γmin = 0.562). In order to make a determination
ith α amounting to 5%, at least five random-sample values of
hich all are WS would have to be available. This corresponds

o the test method cited in Section 2.1.1.

.1.3. Tolerance intervals for the total population with a

iven γ

In the treatment of OOS problems to date, a percentage γ0
f WS results was specified for the total population, which had
o be exceeded if the production unit was to be considered WS.

t
c

T
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he measurement values of a random sample served to test, with
specified error probability α or reliability 1 − α, respectively,
hether this is correct. One can also take a different approach
y determining the rank in which a given percentage of the total
opulation lies. This type of rank is called the tolerance inter-
al. Analogous to the confidence intervals (which must not be
onfused with the tolerance intervals), tolerance intervals can
e defined as one-sided or two-sided. A one-sided upper tol-
rance interval for a given percentage of the total population,
esignated as γ (but not to be confused with the percentage of
S results in the total population), is bordered at the bottom

y a value xlsl, making the probability of measurement values
xlsl equal to γ . Accordingly, a one-sided lower tolerance inter-
al for the percentage γ of the total population is bordered at
he top by a value xusl, making the probability of measurement
alues ≤xusl equal to γ . A two-sided tolerance interval for the
robability γ is bordered at the bottom by xlsl and at the top
y xusl, making the probability of measurement values lying
etween these two limits equal to γ (more precisely, the demand
s for the probability of measurement values ≤xlsl and measure-

ent values >xusl to be identical (1 − γ)/2). The limits of the
olerance intervals correspond to the quantiles ξq of the distri-
ution function F(x), which are defined by: q = F(ξq). For the
ne-sided upper tolerance interval applies: γ = 1 − F(xlsl), from
hich follows xlsl = ξ1−γ ; for the one-sided lower tolerance inter-
al applies: γ = F(xusl), from which follows xusl = ξγ ; and for
he tolerance interval applies γ = F(xusl) − F(xlsl) (or, more pre-
ise: F(xlsl) = 1 − F(xusl) = (1 − γ)/2), from which follows that
lsl = ξ(1−γ)/2 and xusl = ξ(1+γ)/2.

The distribution function is normally unknown and the lim-
ts of the tolerance interval have to be estimated based on the
andom-sample results x1, . . ., xn. Since the random-sample val-
es, ranked in order of size, contain all of the information on the
istribution function F(x) that can be derived from the random
ample (they constitute a “sufficient” statistic for F(x)), it sug-
ests itself to determine the limits of a tolerance interval based
n these ranked random-sample values. If arranged from the
owest to the highest value, the rank of a random-sample value
s designated as l (left rank), if arranged from the highest to
he lowest value, as r (right rank). The random-sample value
elonging to the left rank l is designated as x[l] and the value
elonging to the right rank r as x(r). Any random-sample value
[l] having a low left rank number l can serve as the lower limit
lsl of a two-sided tolerance interval, for example the lowest
andom-sample value x[1]. According to the definition of tol-
rance intervals, this value is not part of the tolerance interval
tself, it merely limits it at the bottom. Any random-sample value
aving a low right rank number r can serve as the upper limit
usl, e.g. the highest random-sample value x(1). As these borders
re determined based on random samples, the percentage of the
otal population included within these limits can only be stated
ith an error probability α or reliability 1 − α. The question is,
hat minimum percentage of the total population falls within
he tolerance interval formed by x[l] and x(r) and how reliably
an this percentage be asserted?

The question can be answered by means of the values γmin in
ables 7–10 or the appropriate equation (see herefor the online
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ttachment). It can be stated with the reliability 1 − α that the per-
entage of the total population in interval x[l] < x ≤ x(r) amounts
o at least the value γmin, which for a given α and n corresponds
o the value k = n + 1 − (l + r). For a one-sided upper tolerance
nterval, r = 0 and the value x[l] is taken as the lower limit. For a
ne-sided lower tolerance interval, l = 0 and the value x(r) serves
s the upper limit.

xample 1. The method is to be demonstrated based on the
ollowing data.

andom
sample

0.13 0.49 0.69 0.39 0.50 0.09 0.24 0.13 0.56 0.57

rranged
values

0.09 0.13 0.13 0.24 0.39 0.49 0.50 0.56 0.57 0.69

eft rank l 1 2 3 4 5 6 7 8 9 10
ight rank r 10 9 8 7 6 5 4 3 2 1

The lowest value x[1] is 0.09. If it serves as the lower limit of
one-sided upper tolerance level, one can state with a reliability
f 95% that the percentage of the total population exceeding 0.09
s at least 0.741. This is the value γmin found in Table 9 (online
ttachment) for n = 10 and k = 10 (= n + 1 − (l + r) for l = 1 and
= 0). If the second-lowest value x[2] = 0.13 serves as the lower

imit of the tolerance interval, only the minimum percentage
min = 0.606, which can be found in Table 9 at n = 10 and k = 9,
an be asserted with a reliability of 95%. The same γmin can
e asserted with a reliability of 95% for the percentage of the
otal population lying between the two-sided tolerance interval
ormed by the lowest value x[1] and the highest value x(1) (as
n this case l = 1 and r = 1 and thus n + 1 − (l + r) = n − 1). The
ighest random-sample value is 0.69. It can therefore be stated
ith a reliability of 95% that the probability of measurement
alues from the production unit being higher than 0.09 but not
igher than 0.69, is at least 0.606 (Table 2).

The selection of the ranked values l and r to form the tolerance
nterval depends on the random size n. For small random-sample
izes n (smaller than or equal to 10) one will select l = 1 and r = 1,
.e. the lowest and highest random-sample value as the lower

nd upper limit of the tolerance interval, respectively. However,
hese extreme values can fluctuate greatly from random sam-
le to random sample. They can also represent “outliers”. If

able 2
inimum percentage of future values in the prediction interval in relationship

o the random-sample size n and the confidence probability 1 − γ

1 − γ = 0.8 1 − γ = 0.9 1 − γ = 0.95

5 0.5098 0.4160 0.3426
10 0.7290 0.6631 0.6058
15 0.8133 0.7644 0.7206
20 0.8576 0.8190 0.7839
30 0.9035 0.8764 0.8514
40 0.9270 0.9062 0.8868
50 0.9413 0.9244 0.9086
60 0.9509 0.9367 0.9234
70 0.9578 0.9456 0.9340
80 0.9630 0.9522 0.9421
90 0.9671 0.9575 0.9484
00 0.9704 0.9617 0.9534
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uch outliers are identified as measuring errors or other errors,
hey are to be eliminated from the random sample. If they do
ot represent errors, they can account for very wide tolerance
imits. The impact of outliers on the determination of the tol-
rance limits is reduced if the tolerance interval is not formed
y the lowest and highest random-sample values but by val-
es tending more toward the middle of the random sample. For
andom-sample sizes between 10 and 50, the second- or third-
owest and second- or third-highest random-sample values can
erve as the tolerance limits; for larger random-sample sizes
ven higher l and r ranks. When selecting l and r, one has to
eigh the robustness of the estimated values against outliers

nd the precision with which the tolerance probability can be
tated.

How can a prediction regarding the percentage γ of WS
esults in the total population be made based on the tolerance
ntervals? One possibility is to form the tolerance interval tak-
ng the lowest and highest values and to assume the production
nit as WS if this tolerance interval lies completely within the
pecification range and if for the share of the total population
ying within the interval a value of at least γmin > γ0 can be
sserted with a reliability 1 − α. This means that the production
nit can be declared to be WS only if all random-sample values
ie within the specification range and the random-sample size

is large enough to be able to assert a value γmin > γ0 with a
eliability 1 − α This is a conservative rule of decision. There is
high risk for batches that are actually WS to be erroneously

ejected. The alternative is to form a tolerance interval only for
he WS results of the total population. If only a one-sided lower
pecification limit is given, a one-sided upper tolerance interval
s formed using the lowest value x[l] that still conforms to the
pecification. The minimum share γmin of the total population
f WS results that can be asserted for this interval with a relia-
ility 1 − α is the value belonging to α, n and k = n + 1 − l found
n Tables 7–10. This follows from the fact that of n random-
ample values, l − 1 are OOS and n + 1 − l are WS if the lowest
andom sample value within specification has the left rank num-
er l. If only one one-sided upper specification limit is given, a
ne-sided lower tolerance interval is formed using the highest
alue x(r) that is still within the specification. For this interval
t is possible to assert with a reliability 1 − α at least the prob-
bility γmin that can be found in Tables 7–10 for the given α

nd n for k = n + 1 − r, as in this case r − 1 random-sample val-
es are OOS and n + 1 − r are WS. If a specification interval
s given, a tolerance interval is formed for WS results with the
ower limit formed by the smallest random-sample value x[l] that
s smaller than the lower specification limit and thus OOS, and
hose upper limit is formed by the highest random-sample value

(r) that is either smaller than or equal to the upper specification
imit and thus still. If the lowest random-sample value is greater
han lower specification limit, this limit serves as the lower limit
f the tolerance interval and l = 0. The minimum probability
hat can be asserted for this tolerance interval with a reliabil-

ty 1 − α is the value γmin that can be found in Tables 7–10
see online section) for a given α for k = n + 1 − (l + r).
he production unit is considered WS if γmin is greater

han γ0.
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e Example 1. It is assumed that for the random sample
f Example 1 a one-sided upper specification range with a
ower limit of 0.1 is specified. Of the 10 random-sample val-
es, the second-lowest value x[2] = 0.13 is just higher than this
pecification limit. This value serves as the lower limit of a one-
ided upper tolerance interval. For n = 10, k = 10 + 1 − 2 = 9 and
− α = 95%, the γmin value depicted in Table 9 is γmin = 0.606.

t can thus asserted with a reliability of 95% that at least the per-
entage 0.606 of the total population conforms to specification.
f the production unit is considered to be within specification if
he probability of WS results is greater than 0.6, the production
nit from which the random sample was taken can be classified
s being WS with a reliability 1 − α of 95%.

.2. Calculations on the basis of a normally distributed or
-distributed total population, respectively

.2.1. Analytical examination of
omogeneity—examination using the prediction range of
he t-distribution

How can information from a random sample be used to eval-
ate the total population? Let us examine another example:

xample 2. 10,000 infusion solutions are produced of which
he contents of 5 are each to be examined once during an in-
rocess control. Based on the results of the random sample of
hese 5 solutions the question of how many of these 10,000 are
OS is to be answered.
The question is answered by the prediction range prd(x):

rd(x) = x̄ ± tα,n1+n2−2 · σ̂ges ·
√

1

n1
+ 1

n2
(5)

ere x̄ is the mean value of the random sample n2 and σ̂ges
he standard deviation estimated from it. The number n2 stands
or the size of the random sample for which x̄ and σ̂ges were
etermined. n1 indicates the size of a future random sample
hose result is to be predicted. If n1 future measurements are
erformed, their mean value lies in the prediction range prd(x)
ith a probability of 1 − α. The correction factor tα,n1+n2−2 takes

nto consideration that the standard deviation for small data num-
ers can be estimated with only low certainty. Therefore it is not
he normal distribution itself that is used to calculate the pre-
iction interval but the highly similar but somewhat broader
-distribution [5,6].

As the degree of freedom for the calculation of the quantile
f the t-distribution, the sum of the random-sample numbers
educed by 1 is used here, i.e. of the already taken and of the
uture random sample, since the size of the future random sample
lso influences the size of the prediction range. The prediction
ange indicates the position of the mean value of a future random
ample from the same total population and becomes narrower the
reater n = n1 + n2 is. It does not matter whether random sample
1 or n2 will be greater.
As this question deals with the prediction of the properties of
n individual infusion solution, n1 = 1 (compare [1]). The pre-
iction range indicates in which area almost all of the values
f the total population can be found, except for a very small

n
r
b
a

Biomedical Analysis 44 (2007) 718–729

hare α based on error probability. A high α results in a nar-
ow prediction range, a low α in a wide prediction range. The
rror probability α can be selected to assure that only very few
lements of the total population will lie outside the prediction
ange. Prerequisite for the calculation of the prediction range in
ccordance with Eq. (5) are normally distributed or, for smaller
ata numbers, t-distributed data.

Why can n1 = 2 not be asserted if dual determinations of each
xamined solution are performed later on? From a purely math-
matical point of view this is permitted. The prediction range
redicts where the mean values of the respective dual determi-
ations will lie. The thus obtained prediction range of the mean
alues is smaller than the prediction range of the single values.
n this case, however, the dual determinations are made for one
olution. The variability to be examined is not only due to the
easurement error but also by the compounding. If dual deter-
inations for two solutions were made and their values reported,

he problem would not be properly addressed, as the objective
s to evaluate potential deviations of individual products.

If the prediction range overlaps the specification limit (Sec-
ion 1.2.2, Fig. 2c), a part of the elements of the total population
ies within, another outside the specification range. Thus, if the

ean value is WS and the prediction range does not overlap the
pecification limit, one can assume that most of the elements of
he total population are WS. “Most” is concretized by the error
robability α.

xample 3. The release specification for a content determi-
ation is prescribed as 95.0–105.0% of the declared content.

determination from two different infusion bottles yields the
easurement values 94.5 and 96.0%. Without needing to per-

orm a calculation it becomes apparent that the result is OOS,
f the reportable result is the single measurement. Even if the

ean value is still slightly above the lower specification limit,
he prediction range clearly overlaps the specification range. It
s clear that another, i.e. third, measurement value could again
ie at 94.5% with a very high probability. What is the situa-
ion if many additional WS values are measured? When would
he batch be considered WS? (Continued as Example 4 in the
dditional online Section 2.4.3).

.2.2. Comparison of the calculations using
on-parametric test methods

Eq. (5) (Section 2.2.1) is easy to deal with and allows a
uick estimate of future values. The share of measurement val-
es within the interval, however, is only correct in respect of
he mean. If α = 0.05 (5%) is selected, the calculated share
f measurement values expected to be in the prediction range
− 2α = 0.9 or 90% (2α is selected if the problem is two-sided,

.e. if extreme measurement values can lie above or below the
ean value). This percentage of 90% is only correct in respect

f the mean; in half of the cases the percentage will be slightly
xceeded (it can be 92%, for example), in the other half it will

ot be reached. The deviations to be expected depend on the
andom-sample numbers, whose size is unknown. It is not possi-
le to determine on the basis of the t-distribution how improbable
great deviation of 90% (e.g. 69%) is.
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Table 4
Cumulative mean values for Example 8

k Mean value (1. . .k)

1 300.35
2 301.59
3 301.19
4 301.23
5 300.93
6 300.35
7 300.16
8 300.09
9 299.96

10 299.80
11 299.83
12 299.72
13 299.66
14 299.64
15 299.64
16 299.68
17 299.69
18 299.78
1
2
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H. Köppel et al. / Journal of Pharmaceutic

It is therefore more elegant to cite a prediction range contain-
ng, with a given reliability 1 − γ , at least the percentage 1 − 2α

f the distribution (compare Section 2.1). If one then selects α

nd γ = 0.05, one can state: in 95% of the cases the prediction
ange will overlap at least 90% of the measurement values.

In order to be able to actually use the optimized asser-
ion possibilities of such empirical prediction intervals, larger
andom-sample sizes than those used in t-based calculations are
equired. If one wishes to guarantee with a confidence probabil-
ty of 80% that at least 90% of all future values will be within
he interval limits, 29 measurements are needed (see Table 1).
f the confidence probability is to measure 90%, as many as 37
easurements are needed. These large random-sample numbers

re in part necessary because no assumptions regarding density
istribution of the measurement values are made during such
ank tests, i.e. potential density distribution information can-
ot be relied upon. But even if the classical prediction interval
s selected, which is based on the t-distribution (Section 2.2.1,
q. (5)), the assertion is only correct in respect of the mean

Tables 3 and 4).
This discussion shows that for the typical random-sample

izes used and having stood the test in practice for years, only
ssertions with a relatively low confidence probability can be
ade, which, however, is not viewed as problematic. If large

andom-sample sizes can be easily processed, for example by
apid analysis methods, the gain in information in the area of
onfidence probability would be enormous.

.3. Discussion of the employed methods

The results of the distribution-free calculations (Section 2.1)

nd of the calculations based on a t-distribution (Section 2.2) are
ery similar if the data number is high (n ≥ 30; compare Table 1)
r if the data number is low and a part of the measurement values
ies close to the specification limit (compare data sets C1–C3, D1

able 3
undred single values of the determinations (in ppb) for Example 8

y(n) y(n + 20) y(n + 40) y(n + 60) y(n + 80)

1 300.35 302.17 298.59 300.69 300.36
2 302.83 298.83 300.88 301.18 298.75
3 300.39 301.62 299.39 301.60 300.61
4 301.36 300.26 298.68 299.78 301.26
5 299.72 300.40 301.07 299.47 301.24
6 297.47 300.29 301.55 300.01 300.95
7 298.99 300.69 301.42 301.93 300.90
8 299.57 299.97 300.35 301.27 298.18
9 298.92 301.80 301.20 298.22 300.25
0 298.36 300.03 301.66 300.22 300.71
1 300.22 300.69 299.77 300.09 302.53
2 298.50 299.67 298.01 300.12 299.27
3 298.92 298.07 299.47 300.99 299.77
4 299.37 301.08 300.06 300.03 299.89
5 299.69 299.54 298.81 300.91 299.34
6 300.29 300.09 301.85 297.64 298.48
7 299.81 301.56 302.10 299.08 299.68
8 301.35 303.13 300.19 300.21 299.68
9 299.00 298.51 297.49 300.07 300.95
0 298.28 300.36 299.88 301.72 300.11
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e
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9 299.74
0 299.67

nd D2 in Fig. 2). This may be the reason why false conclusions
ased on the t-distribution (greater deviations from the safety
f 90% applying only on average, compare Section 2.2.2) are
elatively rare in pharmaceutically relevant data sets. For very
mall data numbers (e.g. n = 2 or n = 3) a reasonable statement
s not possible for either of the two methods. The additionally
xisting problem of outliers is separately discussed within the
nline addition to this publication [7,9,10].

If all measurement values are WS and they lie far from the
imit value, and if the data number is small (e.g. n = 5, compare
he data set D4 in Fig. 2), then the two discussed calculation

ethods yield different results. With the distribution-free calcu-
ation the measurement values are reduced to their qualitative
nformation of WS or OOS, resulting in loss of information.

ith this method, therefore, there is no influence on the calcu-
ated maximum OOS percentage if a result lies only slightly or
ery far outside the specification limit. This is unsatisfactory and
peaks for the use of t-based calculations in such cases. These
-based calculations, on the other hand, do not provide concrete
ata on the reliability of the information, which is also unsatis-
actory. Unfortunately there is no better method at the present
ime to evaluate such data sets. It is therefore necessary to look
or ways to optimize the methods. It may be possible to gain addi-
ional information from the status of the total population. The
-based calculation may possibly be used to develop a prelimi-
ary estimate of γ1, which would allow the use of Eq. (4) instead
f Eq. (2) (compare Section 2.1), and statements with clearly
efined statistical reliability would be possible even for smaller
ata numbers. This will be a subject of future exploration.

This article is supplemented with further online attach-
ents, with the additional Section 2.4 “Review of additional
xamples and calculations” and also a complete additional
art 3 “Retesting after OOS Results (Retesting/Resampling)
nd Outlier Treatment”. All those very meaningful addi-
ions complete the publication in respect to establish better
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[

Specification (OOS) Test Results for Pharmaceutical Production, see
http://www.fda.gov/cder/guidance/3634fnl.pdf.

1 The author has copies of citations listed as Web addresses in Ref. [1].
28 H. Köppel et al. / Journal of Pharmaceutic

nderstanding and can be found at: http://www.pharmchem.tu-
s.de/forschung/waetzig/support/.

. Conclusion and outlook

.1. Conclusion

Not every measurement value outside the specification limit
onstitutes an OOS result for the entire data set. OOS results
an occur at random. For very large data numbers it is even
xpected that single values will sharply deviate from the mean
alue and possibly lie outside the specification limits, as the
ormal distribution is generally unlimited. This fundamental
tatement applies initially to large data sets. The mean value
ften meets the specification even in smaller random samples if
ingle values are OOS.

If the homogeneity of the random sample is of critical impor-
ance, i.e. even if the single values have to lie within given
pecification limits, it is still possible for a single value to be
nusually high or low. For the frequently used small data num-
ers (n < 10) a single OOS result points strongly to an overall
OS result. In other words: a “random” OOS result spoils the

ntire random sample in such cases.
Multiple measurements are often worthwhile, especially if

easurement values and specification lie close to each other.
ual determinations lead to very large prediction intervals. Here,

t is often impossible to assure compliance with the specification,
ven if either measurement value on its own meets the specifi-
ation. OOS results can usually be prevented in the forefront by
sing suitable data numbers during the planning phase of the
ests.

Taking measurements until the desired result is achieved
testing into specification) is not permitted. Sequential random-
ampling plans, however, make sense in many cases. Important
s the random-sampling plan, which should be previously speci-
ed in a standard operation procedure (SOP). As problematic as
ultiple measurements with arbitrary termination is the non-

ermitted elimination of extreme values. When dealing with
xtreme values it must be kept in mind that the error search
annot be replaced with statistical methods—no matter how
ound and established they may be. Still, outlier tests serve
s an important tool, though mainly of a diagnostic nature.

hen relying on outlier tests, SOPs are especially impor-
ant. The uniform evaluation of extreme values in data sets
s permitted but requires the consensus of all departments
nvolved.

.2. Outlook and additional important aspects regarding
he problem of OOS results

This article does not address in greater detail the variability
n the spread of measurement data. Although the uncertainty in
etermining the standard deviation has been implicitly consid-

red through the used t-factors, it is also important to question
hether the spread of a process or measurement method is

cceptable at all. The long-term documentation of results is an
mportant quality assurance measure by which OOS results can

I
a
a
2
b
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ften be prevented in the early stages. Control cards and trend
nalyses can serve as aides in this effort. All considerations
egarding t-statistics are based on a normally distributed total
ata population. It is therefore interesting to examine the cases
n which great deviations from the normal distribution can be
xpected. An important case group is certainly data sets contain-
ng outliers. In-depth discussion of outlier problems will remain
mportant into the future. It would be beneficial to conduct this
iscussion in a broad forum and with the aid of many example
ata sets.
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ndex of symbols and abbreviations

: probability of an error of the 1st kind, i.e. to discard the null hypothesis
despite its applicability; producer risk

: probability of an error of the 2nd kind, i.e. to discard the alternative hypothesis
despite its applicability; consumer risk

0: threshold value for the percentage of WS values in the production unit
required to be reached at a minimum in order for the production unit to be
considered to conform to specification

ias: difference between the true value and the analysis result
ollective: see total population; term according to R. v. Mises
onfidence interval: range in which the (unknown) value for the actual percent-

age of WS results in the total population can be found with the probability
1 − α

0: threshold value for the percentage of WS values in the random sample
required to be reached at a minimum in order for the production unit to be
considered to be within specification

easurement range: range from the lowest measured value to the highest mea-
sured value
: size of the random sample
: size of the total population
OS result: out-of-specification result; result lying outside the specification

limits
utlier: (extreme) values due to errors

W

z
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ower: “test power” of a method; indicates the certainty with which an OOS
result is recognized as such, 1 − β

recision: measure for the spread and the congruence of the measurement val-
ues after the multiple performance of an analysis (within one measurement
series)

rediction interval: range in which the mean value of a future random sample
will lie with a certain probability (1 − 2α for 2-sided intervals)

roduction unit: production batch, lot
ange: see measurement range
andom sample: measurement values obtained for a sample of the size n taken

from a total population; x1, x2, . . ., xn

obustness: measure for the independence of the analysis results of a method
after minor changes to the measuring system

est power: see power
olerance interval: measurement range in which a specified percentage of the

total population can be found
otal population: all of the elements of a quantity to be examined, e.g. all

tablets in a batch, number of all possible measurement values obtained by
one method
S values: within-specification values; values lying within the specification
limits

1−α: (1 − α) quantile of the standard normal distribution (mean value 0,
variance 1)
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